GENERAL FULL-WAVE GREEN’'S FUNCTIONS
IN SPECTRAL DOMAIN FOR ARBITRARILY
MULTILAYERED DIELECTRIC MEDIA

Keren Li

The University of Electro-communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182, Japan
Tel/lFax : +81-424-81-5713
E-mail: keren@light.ee.uec.ac.jp

ABSTRACT function, with which the Green’s function is ex-
In this paper, we present general analytical pressed in a single or double infinite summation
formulas of the full-wave spectral domain of all distributions of the image sources [3]. On
Green'’s functions for arbitrarily multilayered  the other hand, recent development of the micro-
dielectric media. The Green’s functions are wave integrated circuits (MICs) and monolithic
two scalar potentials created by a horizontal microwave integrated circuits (MMICs) brings a
dipole, corresponding two electromagnetic new trend in the design of the microwave circuits
modes, transverse magnetic and transversethat use a multilayered medium structure in or-
electric modes to the normal direction of the der to provide high cost performance as commer-
layer plane. The analytical formulas in spec- cial products [11]-[12]. The efficient analysis of
tral domain have simple form and are appli- such multilayered medium structure usually re-
cable to arbitrary number of the dielectric lay- quires a Green’s function that incorporates par-
ers. The derivation of the formulas employs a tially or all the boundary conditions in the multi-
technique developed for the derivation of the layered structures [1], [5]-[10].

electrostatic Green’s function in multilayered It is always to be expected to have an ana-
media. The Green’s functions used in the spec-lytical expression for the Green'’s function, if the
tral domain approach are also presented. expression exists and is possible to derive. The

analytical expression can help one to make high
computation efficiency or to introduce some tech-
| INTRODUCTION niques to improve the computation efficiency.
How to determine a Green’s function is one dfloreover, the analytical expression is necessary
the most important and indispensable step in solynd indispensable in treating the singularity of
ing the integral equations formulated by theéhe Green’s function and its boundary integrals
boundary integral equation techniques such as ¢, [3].
boundary element method (BEM) [1]-[4] or the In spite of the need of the analytical Green’s
partial-boundary element methaotBEM) [5] function, for a multilayered media with an arbi-
and the spectral-domain approach (SDA) [6]-[10{rary number of layers, it has not yet been devel-
For free space or for an unbounded homogenaowsed, to author’s best knowledge. Fortunately,
region, the Green'’s function can be easily olwe have developed a general analytical solution
tained and is of simple closed form for both ele®f the electrostatic Green’s function for multilay-
trostatic and time-harmonic fields. For a oneered media [13], [14]. This success indicates the
layered or two-layered structure, the method @fossibility of deriving an analytical expression
images can be employed to obtain the Greerfsr the full-wave Green’s function in the multi-
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layered media. In this paper, using the similar Ground conductor
derivation technique, we discovered such full- m————————————————— v
wave Green’s function in the spectral domain. In &
the derivation, we use two potentials, which were
introduced by Harrington [2] and widely used i 4
the spectral domain approach [6]. The potentials

. . & . (Xy)
are corresponding to two electromagnetic modes, |
transverse magnetic and transverse electric modés . X
to the normal direction of layer plane, not the *
modes that are transverse to the direction of the horizontal d‘PO'e@

>
=

propagation as usually used in the analysis of g
waveguides and transmission lines. After a brief
description of the potentials and the field expres- : ,
sions, we present two general analytical expres- ,
sions of the Green'’s function. Since the deriva- &

tlon process is fairly compllcateql, the detail is Ground conductor ¥
omitted here. The Green’s functions employed J,
in the spectral domain approach (SDA) are also Y

presented as an application of the derived gen-
eral formulas. Fig. 1 A two-dimensional multilayered medium

structure with a horizontal dipole
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[I. GREEN'S FUNCTIONS FOR ARBI-
TRARILY MULTILAYERED MEDIA

As illustrated in Fig. 1, the arbitrarily multilay- and thezdependence expBz) are implied. These
ered medium structure consistd.asotropic di- potentials correspond to two electromagnetic field
electric layers with electric parameteygi = 1, modes, transverse magneticytdirection (TM

2, ...,L) and perfectly conducting ground conto-y) and transverse electric yalirection (TEto-
ductors. The source point and the observatigh[2]. To solve the potentials in the spectral do-
point are placed ijth andith layer and denoted main, we take the Fourier transform of them as
by (%o, Yo) and &, y), respectively. The sourceis © ;

a line horizontal dipole for a two-dimensional #a:Y) :L,o oAx, y) &' dx (2)
problem. Coordinate systems for analysis afghe Fourier transformed wave equation is then
built in each local layer for convenience of analyexpressed as

sis. Hence, thgy andy in such local coordinate PE
systems should have the values in the regisn 0 |- o + —-B )60+ K’p=0 3)
yo< hj and O< y < hy, respectively. In this paper, | o )

we define a layer as “the source layer” when tid its solution is given by

linesource exists in that layer, or as “the non- @=Acosh yy + Bsinh yy 4)
source layer” otherwise. where-y’ = k> - a*- .
Here, we introduce two scalar potentia'fs Defining following parameters for conve-
and@" , which satisfy wave equations hience of derivation
Iy h_ 1V
e e Z¢="", Y"="" and
D2f¢\+(k2—ﬁ2)/¢\=0 (1) we wy
o Lo
_ @ @ _ 1 L1
in a homogeneous source-free region, where Ye:?, z :W (5)

k> = «w’ue, and the time convention exjt)
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we can express all field components as followsvhere,

. a+BF .. -1 -
£ =] yﬁ ze . S, = a2+B2(aJX+ﬂJZ) (11.1)
~ az+ﬁ2 ) s 1 _ .
Hy=i= yh g Sh a2+ﬁ2( Bl+ady (11.2)
» h=yh, i=1,2 ML
_ o e00° o (12)
E, JaZeW—JM Y=KY, Yo=K
N O By = By (P, B, IR, (13)
E,=iBZ° = +jag v )
ay Am (y) = Am(oy 01 Dmyy hi+]_l|I|I|hL) (14)
Nh i — _ - —
A= B0+ jayh?? By ()= By, bz, WD, .y, 0,1110)
‘;h (8) Dn(z, 2,z ) =
q — : I : ¢ L L-1
H,= - ja¢®+jBY"—X- 1 m 0 m O
_ Y'" —+Y I
_ oy kljlYkm Dkljl “ 9z, oz,
wherey = yy. L
Applying such solutions to multilayered Dkll sinhz (15)
media, we have solutions in each homogeneousm =g h
layer and after a fairly complicated derivation,
we find following general formulas for these two |||. G ReeN’s FUNCTIONS IN SPECTRAL

potentials. DomAIN APPROACH (SDA)

In the spectral domain approach, Green’s func-

For TM+to-y mode X : ) L
tion or a matrix to link the electric field and the

o
Zieaq (¥’y°) - source is necessary. From above general formu-
oy las given in (9), (10), we can easily derive such
Ai+ﬁ—7 Aj_* matrix. . . . . -
e (=Y A, (%) Fori >j ori <j, we have corresponding
= i>jorizjy2y terms in the Green’s function given as follows:
Tl e e o @ AR -yal
© | A, (Y4, (Yo G, = A (16.1)
e
I<JOI’ |:lesy0 - Ale_(y)Aé+(F]J—%)
G, = A (16.2)
For TEto-y mode _ €
(V. = . A'+(h,—§/)A’ (Yo)
@, (Y:Yo) | | ér:j+ _"h 5 (16.3)
A (h =) A (%) _
A - 8 (7)) (=)
jj i>jori=j,y=y, (10) G, = A (16.4)
AT AL'(y) Arj:(ﬁj ~ Yo Therefore, substituting these terms into Eq. (6)

gives
i<jori=jysy
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< i mensional Green'’s functions, since the derivation
G, G

E)ij x Pxz j)j( procedure after expanding the Green’s function
el =i A0 | ji (17) in a two-dimensional plane is completely the same
z G Gzz z as that of two-dimensional problem. We believe

given by wave Green'’s function presented in this paper will

y y y provide a key to open the door of the analysis of

~ 1] ~ |j o ~ j . . . .

G, = a’G, -G 18.1 the arbitrarily multilayered medium structures.
XX az+ﬁz e h
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